Inequalities for Doubly Nonnegative Functions

نویسندگان

چکیده

Let $g$ be a bounded symmetric measurable nonnegative function on $[0,1]^2$, and $\left\lVert g \right\rVert = \int_{[0,1]^2} g(x,y) dx dy$. For graph $G$ with vertices $\{v_1,v_2,\ldots,v_n\}$ edge set $E(G)$, we define
 \[ t(G,g) \; \int_{[0,1]^n} \prod_{\{v_i,v_j\} \in E(G)} g(x_i,x_j) \: dx_1 dx_2 \cdots dx_n .\]
 We conjecture that $t(G,g) \geq \left\lVert \right\rVert^{|E(G)|}$ holds for any spectrum. prove this various graphs $G$, including complete graphs, unicyclic bicyclic as well $5$ or less.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sufficient Inequalities for Univalent Functions

In this work, applying Lemma due to Nunokawa et. al. cite{NCKS}, we obtain some sufficient inequalities for some certain subclasses of univalent functions.

متن کامل

New integral inequalities for $s$-preinvex functions

In this note, we give some estimate of the generalized quadrature formula of Gauss-Jacobi$$underset{a}{overset{a+eta left( b,aright) }{int }}left( x-aright)^{p}left( a+eta left( b,aright) -xright) ^{q}fleft( xright) dx$$in the cases where $f$ and $left| fright| ^{lambda }$ for $lambda >1$, are $s$-preinvex functions in the second sense.

متن کامل

Elementary inequalities that involve two nonnegative vectors or functions.

We report 96 inequalities with common structure, all elementary to state but many not elementary to prove. If n is a positive integer, a = (a1,..., an) and b = (b1,..., bn) are arbitrary vectors in R(+)n=[0,infinity)n, and rho(mij) is the spectral radius of an n x n matrix with elements m(ij), then, for example: [equation: see text]. The second inequality is obtained from the first inequality b...

متن کامل

Interlacing Inequalities for Totally Nonnegative Matrices

Suppose λ1 ≥ · · · ≥ λn ≥ 0 are the eigenvalues of an n × n totally nonnegative matrix, and λ̃1 ≥ · · · ≥ λ̃k are the eigenvalues of a k × k principal submatrix. A short proof is given of the interlacing inequalities: λi ≥ λ̃i ≥ λi+n−k, i = 1, . . . , k. It is shown that if k = 1, 2, n− 2, n− 1, λi and λ̃j are nonnegative numbers satisfying the above inequalities, then there exists a totally nonneg...

متن کامل

Separating doubly nonnegative and completely positive matrices

The cone of Completely Positive (CP) matrices can be used to exactly formulate a variety of NP-Hard optimization problems. A tractable relaxation for CP matrices is provided by the cone of Doubly Nonnegative (DNN) matrices; that is, matrices that are both positive semidefinite and componentwise nonnegative. A natural problem in the optimization setting is then to separate a given DNN but non-CP...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Journal of Combinatorics

سال: 2021

ISSN: ['1077-8926', '1097-1440']

DOI: https://doi.org/10.37236/8947